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We theoretically investigate the Fano effect in dc Josephson current at the absolute zero of temperature. The
system under consideration is a double-path Josephson junction in which one path is through an insulating
barrier and the other one is through a quantum dot �QD�. Here the Kondo temperature is assumed to be much
smaller than the superconducting gap, and the Coulomb interaction inside the QD is treated by the Hartree-
Fock approximation. It is shown that the Josephson critical current exhibits an asymmetric resonance against
the QD energy level. This behavior is caused by the interference between the two tunneling processes between
the superconductors: the direct tunneling across the insulating barrier and the resonant one through the QD.
Moreover, we find that the Josephson critical current changes its sign around the resonance when the Coulomb
interaction is sufficiently strong. Our results suggest that 0-� transition is induced by the cooperation of the
Fano effect and the Coulomb interaction inside the QD.
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I. INTRODUCTION

In the last decade, transport properties of quantum dot
�QD� systems have been extensively studied. These studies
are motivated not only by their potential applications1–3 but
also by fundamental interests in many-body problems and
interference phenomena such as the Kondo effect4–7 and the
Fano effect.8–12

Kobayashi et al.12 observed the Fano effect using a QD
embedded in an Aharonov-Bohm interferometer. In this sys-
tem, there are two transmission processes between the source
and drain electrodes. One is through the continuum in the
arm, and the other is through the discrete energy level of the
QD. The interference between these processes results in an
asymmetric resonance in the differential conductance. There-
after there have been many studies on the Fano effect in QD
systems, but most of these studies have focused on normal-
metal systems.9–11 Thus, the Fano effect in superconducting
systems13,14 is less understood.

Meanwhile, many authors have investigated
superconductor/quantum dot/superconductor �S/QD/S�
junctions.15–23 In these systems, the ratio of the Kondo tem-
perature TK to the superconducting gap � is a key parameter.
In the strong-coupling limit TK��, the Kondo effect sur-
vives even in the presence of the superconductivity; a Coo-
per pair is broken in order to screen the localized spin in the
QD. On the other hand, in the weak-coupling limit TK��,
the Kondo effect is negligible because a strongly bound Coo-
per pair cannot be broken. Then, the Cooper pair feels the
localized magnetic moment in the QD. Under this situation,
when the Coulomb interaction is strong inside the QD, the
so-called 0-� transition occurs.24–28 It means that the depen-
dence of the Josephson current on the phase difference �
changes from I= �Ic�sin � to I= �Ic�sin��+��=−�Ic�sin �, i.e.,
the critical current becomes negative.

Recently, Zhang13 studied the Fano effect in a Josephson
junction with a QD coupled in parallel. The calculations
were done within the finite U slave boson mean-field theory

for TK��. It was concluded that the Fano effect caused 0-�
transition in that regime.

In this paper, we calculate the Josephson current through
the similar system as in Ref. 13, but for TK��. The purpose
of this study is to examine whether the 0-� transition caused
by the Fano effect occurs or not in this regime. The system
we consider is a double-path Josephson junction; a S/QD/S
junction and a conventional Josephson junction are con-
nected in parallel �see Fig. 1�. Here we employ the Hartree-
Fock approximation �HFA� in treating the Coulomb interac-
tion inside the QD. It is found that the critical current
exhibits the characteristic Fano-type dependence on the QD
energy level. We also show that the critical current near the
resonance can change its sign under the strong Coulomb in-
teraction. This means that the combination of the Fano effect
and the Coulomb interaction effect causes 0-� transition.
Finally, by using a simple perturbative approach with respect
to the electron tunneling, we discuss the physical origin of
the transition and estimate the parameter regime where the
system behaves as a � junction.

The organization of this paper is as follows. In Sec. II, we
introduce the model Hamiltonian and present the details of
our calculation. In Sec. III, we show the results for the non-
interacting case and the interacting case, respectively. Dis-
cussions are given in Sec. IV with the results of the pertur-

FIG. 1. Schematic illustration of the system under consideration.
A S/QD/S junction and a conventional Josephson junction are con-
nected in parallel.
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bation expansion. Section V is devoted to a brief summary.
We also present the results obtained by the Hubbard-I
approximation29 in the Appendix.

II. MODEL AND FORMALISM

In order to describe the system shown in Fig. 1, we use
the following Hamiltonian:

H = HL + HR + HD + HT, �1�

H� = �
k,	


kc�k,	
† c�k,	 − �

k

��ei��c�k,↑
† c�−k,↓

† + H.c.� , �2�

HD = �
	

�dd	
†d	 + Un↑n↓, �3�

HT = − t�
k,	

�cLk,	
† d	 + cRk,	

† d	 + H.c.�

− w �
k,k�,	

�cRk�,	
† cLk,	 + H.c.� , �4�

where �=L ,R. HL �HR� describes the left �right� supercon-
ductor with the s-wave order parameter �ei�L ��ei�R�. c�k,	 is
the annihilation operator for electrons with spin 	 and wave
vector k in the superconductor �. HD represents the QD with
the discrete energy level �d and the Coulomb interaction U,
where d	 annihilates an electron in the QD and n	=d	

†d	.
The electron tunneling is described by HT, in which t is the
tunneling amplitude between the superconductors and the
QD, and w is the direct tunneling amplitude across the insu-
lating barrier.

The Josephson current is simply given by

I = e�ṄL� = It + Iw, �5�

where

It = −
et

2��
�

k
� d
 tr�Ĝd,Lk

� �
� − ĜLk,d
� �
�	 , �6�

Iw = −
ew

2��
�
k,k�
� d
 tr�ĜRk,Lk�

� �
� − ĜLk�,Rk
� �
�	 . �7�

Here we introduced the lesser Green’s functions, which are
defined by

Ĝ�k,��k�
� �t,t��

= i
 �c��k�,↑
† �t��c�k,↑�t�� �c��−k�,↓�t��c�k,↑�t��

�c��k�,↑
† �t��c�−k,↓

† �t�� �c��−k�,↓�t��c�−k,↓
† �t��

� ,

�8�

Ĝd,�k
� �t,t�� = i
�c�k,↑

† �t��d↑�t�� �c�−k,↓�t��d↑�t��
�c�k,↑

† �t��d↓
†�t�� �c�−k,↓�t��d↓

†�t��
� . �9�

In equilibrium state, the lesser Green’s function is expressed
with the advanced and retarded Green’s functions as

Ĝi,j
��
� = f�
��Ĝi,j

a �
� − Ĝi,j
r �
�	 , �10�

where f�
� is the Fermi distribution function. Ĝi,j
a �Ĝi,j

r � is
the advanced �retarded� Green’s function and i , j

= �Lk ,Rk ,d
. Since �Ĝi,j
a �†= Ĝj,i

r , all we have to calculate is
the retarded Green’s function. With use of the spinor field
operators

��k = 
 c�k,↑

c�−k,↓
† �, �d = 
d↑

d↓
† � , �11�

we express the retarded Green’s function as

Ĝi,j
r �
� = ���i;� j

†��
. �12�

In calculating the Green’s functions, we employ the equa-
tion of motion method. The equation of motion is given by


���i;� j
†��
 = ���i,� j

†
� + ���i;�H,� j
†	��
. �13�

It is straightforward to find that all the Green’s functions are
expressed in terms of the dot Green’s function as

Ĝd�
r = Ĝdd

r T̂�Ĝ��
�0�r + Ĝ

�̄�

�0�r	 , �14�

Ĝ�d
r = �Ĝ��

�0�r + Ĝ
��̄

�0�r	T̂Ĝdd
r , �15�

Ĝ
��̄

r
= Ĝ

��̄

�0�r
+ �Ĝ��

�0�r + Ĝ
��̄

�0�r	T̂Ĝ
d�̄

r
, �16�

where we have taken the summation over wave vectors in the

right-hand sides. Here L̄=R, R̄=L, and T̂=−t	̂z. Ĝ��
�0�r and

Ĝ
��̄

�0�r
are the Green’s functions for T̂=0 which are expressed

as

Ĝ��
�0�r = ��ĝ�

r �−1 − Ŵĝ
�̄

r
Ŵ	−1, �17�

Ĝ
��̄

�0�r
= ĝ�

r ŴĜ
�̄�̄

�0�r
, �18�

where Ŵ=−w	̂z. The unperturbed Green’s function of the
superconductor � is given by

ĝ�
r =

��

��2 − 
2 
 − 
 �ei��

�e−i�� − 

� , �19�

where � is the normal density of states at the Fermi level.
Then, what we have to know in calculating the Josephson

current is only the dot Green’s function Ĝdd
r .

The Dyson equation for the dot Green’s function is writ-
ten as

Ĝdd
r = ĝd

r + Ĝdd
r �̂T

r ĝd
r + D̂rÛĝd

r , �20�

where Û=U	̂z and

ĝd
r = �Î
 − 	̂z�d	−1, �21�

�̂T
r = T̂�ĜLL

�0�r + ĜRR
�0�r + ĜRL

�0�r + ĜLR
�0�r�T̂ . �22�

Here D̂r�
�= ���d ;�d
†��
 is the higher-order Green’s function

with
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�d = 
d↑n↓

n↑d↓
† � . �23�

In order to solve Eq. �20�, we decouple D̂ as

���d;�d
†��
 � ���d;�d

†��

 �n↓� − �d↓d↑�
�d↑

†d↓
†� �n↑�

� , �24�

where the matrix elements are given by solving the usual
self-consistent equations

�n↑� =
1

2�i
� d
�Ĝdd

� �
�	11, �25�

�d↑
†d↓

†� =
1

2�i
� d
�Ĝdd

� �
�	21, �26�

and the other elements obey similar equations. The decou-
pling �24� corresponds to the usual HFA. Substituting Eq.
�24� into Eq. �20�, the dot Green’s function is obtained as

Ĝdd
r = ��ĝ

d̃

r�−1 − �̂T
r 	−1, �27�

where ĝ
d̃

r
is the dressed Green function which is expressed as

�ĝ
d̃

r�−1 = 

 − �d − U�n↓� − U�d↓d↑�
− U�d↑

†d↓
†� 
 + �d + U�n↑�

� . �28�

Then, we can finally estimate the Josephson current.

III. RESULTS

The Josephson current is obtained as a function of the
phase difference �=�L−�R and the QD energy level �d. We
define the coupling strength between the QD and each of the
superconductors by �=��t2. The direct tunneling across the
insulating barrier is characterized by �=�2�2w2. Because the
current-phase relation is roughly given by I= Ic sin �, for
simplicity, we determine the Josephson critical current by
Ic� I��=� /2� in this paper. All the calculations below are
done assuming that the system is at the absolute zero of
temperature. We set � /�=0.1 throughout this paper.

The Josephson current consists of the two contributions:
one from the discrete Andreev bound states �ABSs� inside
the gap �
��� and the other from the continuous spectrum
outside the gap �
���. The ABSs 
A are determined as the
poles of the dot Green’s function, whereas the poles of the

other Green’s functions such as Ĝ
��̄

�0�r
do not contribute to the

current.

A. Noninteracting case (U=0)

We show the dependence of the critical current on the QD
energy level in Fig. 2. These line shapes remind us of the
Fano line shapes which are seen in the differential conduc-
tance of normal-metal systems. Far from the resonance
���d�→��, the currents asymptotically go to a certain value,
which is given by

I0 =
e�

�

� sin �

2�1 − � sin2 �
2

, �29�

where �=4� / �1+��2 is the transmission probability through
the direct channel.

The ABSs below the Fermi level are shown in Fig. 3�a�.
One can see that there are the two ABSs, which we call
“primary ABS” 
1 and “secondary ABS” 
2, respectively.
The secondary ABS is present in the region

−
�

��
− � � �d � − �

��
+ � �30�

and disappears for �=0, i.e., in the S/QD/S junction. We see
that the ABSs represent the asymmetric dependence on the
QD energy level being affected by the interference. Figure
3�b� shows the current contributions from each of the ABSs
and the continuous spectrum outside the gap. It should be

FIG. 2. The critical currents in the noninteracting case �U=0�
are plotted against the QD energy level �d. The transmission prob-
ability �=4� / �1+��2 is changed from 0 �bottom� to 1 �top� with a
step of 0.1. The coupling strength is chosen to be � /�=0.1, which
is adapted to all figures below.

FIG. 3. �a� ABSs below the Fermi level for �=0.3. The full
�dotted� line corresponds to the primary �secondary� ABS, i.e., 
A

=
1�
2�. �b� Current contributions from each of the ABSs and the
continuous spectrum for �=0.3. The dashed line indicates the con-
tinuous spectrum contribution.
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noticed that the contribution from the primary ABS becomes
negative at a certain region, whereas the sum of the three is
always positive.

In the previous work, it was claimed that 0-� transition
occurred around the dip even in the case U=0.13 We however
cannot see the transition in the whole parameter regime. This
difference is caused by the fact that the contribution from the
continuous spectrum was not taken into account. It is known
that the contribution from the continuous spectrum is not
zero in S/QD/S junctions.22,23 If we choose the appropriate
parameter values �� /�=4, �=0,0.6,1�, the contribution
from the primary ABS shows almost the same behavior as
Fig. 5�a� in Ref. 13.

B. Interacting case (UÅ0)

We show in Fig. 4 the critical currents as a function of the
QD energy level at U /�=10 for different values of �. The
full line in Fig. 4�a�, which is for �=0, represents the current
flowing through the S/QD/S junction. As is verified by the
previous theoretical27,28 and experimental21,25 works, a nega-
tive critical current �i.e., � junction� is found in the magnetic
region −U��d�0, in which the average electron number in
the QD is close to unity.

With increasing �, the peak structure gradually changes
because of the interference effect �Fano effect�. In Figs. 4�a�
and 4�b�, focusing on the region �d�−U, the critical current

near the resonance �d=−U decreases as � increases. Then, it
becomes negative at a certain value of �, which means that
0-� transition occurs. We can clearly see in Fig. 5 that the
current-phase relation changes from I= �Ic�sin � to I
=−�Ic�sin � by sweeping �d across the transition point. Note
that this 0-� transition occurs in the nonmagnetic region �d
�−U, where the average electron number is close to 2. Thus,
the transition is induced not by the same mechanism as that
in S/QD/S junctions. We find in Fig. 4�c� that the critical
current is always positive for large �.

Figure 6 shows the critical currents against the QD energy
level for different interaction strengths U /�. For small U /�,
the peak structure around the resonance �d=−U drastically
changes with U /�. Meanwhile, for large U /�, the peak
structure does not depend on the value of U /� �it just shifts
the position of the resonance�. Here the negative critical cur-
rent in the dip region of the resonance �d=−U is found again
for large U /�.

As is shown above, the Fano effect induces 0-� transition
with large U /� and appropriate values of �. Almost all the
behaviors shown in this section are also seen in the results
obtained by the Hubbard-I approximation,29 which we show
in the Appendix.

IV. PERTURBATIVE APPROACH

It is important to find the physical origin of the 0-� tran-
sition and the parameter regime where the system is a �
junction. To do this, we recalculate the Josephson current by
a simple perturbation theory with respect to the electron tun-
neling. The Josephson current flowing through our system
has three components, I= Ii+ IQD+ Iint. Here Ii and IQD are the
noninterference components associated with the path through
the insulating barrier and the QD, respectively, and Iint is the
interference component. They are expanded as Ii= Iw2 + Iw4

+¯, IQD= It4 + It6 +¯, and Iint= Iwt2 + Iw2t2 +¯, where Iwntm is
the term which is proportional to wntm. We calculate the
lowest-order terms of each of the components. Here we show
the results only for �d�−U as follows:

Iw2,c =
e�

�

w

�
�2

�
k,k�

2�3

EkEk��Ek + Ek��
, �31�

FIG. 4. Critical currents as a function of the QD energy level at
U /�=10 for �a� �=0 �full line�, �=0.0005 �dashed line�, and �
=0.0015 �dotted line�; �b� �=0.002 �full line�, �=0.003 �dashed
line�, and �=0.005 �dotted line�; and �c� �=0.06 �full line�, �
=0.08 �dashed line�, and �=0.1 �dotted line�. The inset of �b� is an
extended figure around the resonance �d=−U.

FIG. 5. Current-phase relation at U /�=10 for different �d which
are marked by the filled circles in the inset of Fig. 4�b�. Explicitly
�d /�=−14.5 �full line�, �d /�=−13.5 �dashed line�, �d /�=−12.1
�dotted line�, and �d /�=−11 �dotted-dashed line�.
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It4,c =
e�

�

 t

�
�4

�
k,k�

2�5

EkEk��Ek − �d − U��Ek� − �d − U�

� 
 1

Ek + Ek�
−

2

2�d + U� , �32�

Iwt2,c = −
e�

�

w

�
�
 t

�
�2

�
k,k�

2�4

EkEk��Ek� − �d − U�

� 
 2

Ek + Ek�
+

1

Ek − �d − U� , �33�

where Iwntm,c= Iwntm ��=�/2 and Ek=�
k
2+�2. One can see that

only the term of the interference component is negative. It
indicates that the interference effect can induce 0-� transi-
tion when �Iwt2,c� becomes large enough. In fact, Iwt2,c
changes its sign at the resonances and the particle-hole sym-
metric point �d=−U /2;

Iwt2,c�
�0 ��d � − U�
�0 �− U � �d � − U/2�
�0 �− U/2 � �d � 0�
�0 �0 � �d�

� . �34�

This sign change leads to the characteristic peak-dip struc-
ture of the Fano resonance.

The term Iwt2,c originates from the tunneling processes in
which the two electrons of a Cooper pair take the two differ-
ent shortest paths. Two of such tunneling processes are sche-
matically represented in Fig. 7. In each of the tunneling pro-
cesses, the two electrons acquire the different additional
phases �QD and �i, respectively. Then, the phase of the trans-
ported Cooper pair is shifted by �=�i+�QD. The negative
sign of Iwt2,c is attributed to this phase shift.

To examine what value � takes in each of the tunneling
processes, let us consider two of them. Figure 7�a� shows one
for the case �d�−U, where the QD energy level is almost
doubly occupied. In this case, to transfer an electron from the
left to the right superconductor through the QD, first an elec-
tron in the QD must tunnel out to the right superconductor.
Then an electron in the left superconductor tunnels into the

FIG. 6. Critical currents as a function of the QD energy level for
�=0.02 with �a� U /�=1 �full line�, U /�=1.25 �dashed line�,
U /�=1.5 �dotted line�, and U /�=1.75 �dotted-dashed line�; �b�
U /�=2 �full line�, U /�=3 �dashed line�, U /�=4 �dotted line�, and
U /�=5 �dot-dashed line�; and �c� U /�=6 �full line�, U /�=8
�dashed line�, U /�=10 �dotted line�, and U /�=12 �dotted-dashed
line�.

FIG. 7. Schematic representation of tunneling processes which
contribute to Iwt2 for �a� �d�−U and �b� −U��d�−U /2. Dashed
line in the energy diagrams of the QD means the Fermi level chosen
as the zero of energy.
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QD. Meanwhile in the case −U��d�−U /2 as in Fig. 7�b�,
it is energetically favorable that first an electron tunnels into
the QD. Comparing these two tunneling processes, we see
that the order of the elementary tunneling events is per-
muted. Because of the anticommutation relation of electron
operators, this permutation results in the � difference of the
additional phase �QD.

Calculating the tunneling amplitudes, one finds that �QD
=0 ��� for the tunneling process represented in Fig. 7�a�
�Fig. 7�b�	. On the other hand, the electrons tunneling
through the insulating barrier get the additional phase �i
=arg�−w�=�. As a result, the phase shift of the transported
Cooper pair is given by �=� �0� for the tunneling process
shown in Fig. 7�a� �Fig. 7�b�	.

The phase shift �=� makes the tunneling process con-
tribute to the critical current negatively. For �d�−U, �=� in
all the tunneling processes which contribute to Iwt2. This is
the main origin of the Fano-induced 0-� transition in our
system. Simply put, the essential origin of this transition is
that the two electrons of a Cooper pair can take different
paths and acquire additional phases; the sum of which equals
�. If one changes the sign of w, the �d dependence of the
Josephson current is converted as I��d�→ I�−�d−U� because
of the particle-hole symmetry. However, one can always find
the negative critical current in a nonmagnetic region inde-
pendently of the sign of w.

In the limit �d→−U−0+, where �Iwt2,c� has a maximum
value, we can perform the summations in Eqs. �31�–�33�
analytically;

Iw2,c =
e�

�
2� , �35�

It4,c =
e�

�

2�2

�2 
 4

�
− 1 +

2�

U
� , �36�

Iwt2,c = −
e�

�

4���

�
. �37�

Substituting these expressions to Ic� Iw2,c+ It4,c+ Iwt2,c�0,
we estimate the conditions for the negative critical current at
�d→−U−0+;

� c
− � � � � c

+, �38�

U � Uc, �39�

where

�c
� = �1 ��2
1 −

2

�
� −

2�

U
�2
�

�
�2

, �40�

Uc =
�

1 − 2/�
� 2.75� . �41�

From Eqs. �38� and �39�, we see that the negative critical
current is possible only for large U and the appropriate val-
ues of �. It is consistent with the results obtained by the HFA
shown in Sec. III. The critical values of � for U /�=10 and
� /�=0.1 are given by �c

��4�c
� / �1+�c

��2�0.003,0.112.

These are somewhat larger than the values �HFA,c
�

�0.002,0.05 estimated from the results of the HFA. Equa-
tion �40� tells us that w /���t /��2 is necessary for the nega-
tive critical current. In this regime, the interference and non-
interference components are of the same order, and the
equation I= Iw2 + It4 + Iwt2 is correct within the second order of
� /�.

V. SUMMARY

We have investigated the Fano effect in a Josephson junc-
tion including a QD in the weak-coupling regime TK��. To
treat the Coulomb interaction inside the QD, we employ the
HFA. The interference effect between the direct and resonant
tunneling processes causes the characteristic Fano line shape.
Furthermore, it is found that our system behaves as a � junc-
tion even in the nonmagnetic region �d�−U for large U /�.
These results suggest that 0-� transition is induced by the
cooperation of the Fano effect and the Coulomb interaction
inside the QD.

A superconducting quantum interference device including
carbon nanotube quantum dots was already achieved in the
recent experiment.21 We expect that our theory will be ex-
perimentally verified using the similar system in the near
future.
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APPENDIX: HUBBARD-I APPROXIMATION

In this appendix, we calculate the Josephson current by
the Hubbard-I approximation29 �HIA� generalized to the su-
perconducting case. By using the HIA, one can take into
account the correlation ��n↑�n↓� beyond the simple HFA.
Since this correlation largely contributes to the charge fluc-
tuation ����n↑+�n↓�2�, we believe that the HIA is more reli-
able at least near the resonances where the charge fluctuation
plays an important role.

First we derive the equation of motion for D in Eq. �20�
and then decouple the higher-order Green’s functions which
arise from Š��d ; �H ,�d

†	�‹
. After that, we get the following
equation:

Š��d;�d
†�‹
 � �̂+ĝu

r + �
�

Š��d;��
†�‹
�̂−T̂ĝu

r

+ Š��d;�d
†�‹
�̂T̂ĝu

r , �A1�

where

ĝu
r = �Î
 − 	̂z��d + U�	−1, �A2�

�̂� = 
 �n↓� ��d↓d↑�
��d↑

†d↓
†� �n↑�

� , �A3�
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�̂ = �
�

�c�,↓

† d↓� − �d↓
†c�,↓� �d↑c�,↓� + �c�,↑d↓�

�d↑
†c�,↓

† � + �c�,↑
† d↓

†� �d↑
†c�,↑� − �c�,↑

† d↑�
� .

�A4�

Equation �A4� seems complex to treat in a first look. How-
ever, assuming that the current through the QD is uniform,
one can see that the following relation holds:

� d

dt
n	� = − it�

�

��c�,	
† d	� − �d	

†c�,	�� = 0. �A5�

In addition, we assume that one can disregard the time de-
rivative of the pair amplitude inside the QD, i.e.,

� d

dt
�d↑

†d↓
†�� = �2�d + U��d↑

†d↓
†� − t�

�

��c�,↑
† d↓

†� + �d↑
†c�,↓

† �� = 0,

�A6�

which guarantees the condition �Ĝdd
r �†= Ĝdd

a . Thus Eq. �A4�
is simplified as

�̂ =
�2�d + U�

t

 0 − �d↓d↑�

�d↑
†d↓

†� 0
� . �A7�

The dot Green’s function is formally obtained by substituting
Eq. �A1� to Eq. �20� as

Ĝdd
r = ��ĝu

r�−1 + �̂+Û	��ĝu
r ĝd

r�−1 − �̂T
r ��ĝu

r�−1 + Û�̂−	 − �̂T̂Û
−1.

�A8�

From this dot Green’s function, we estimate the Josephson
current in the same way as in Sec. II.

In Fig. 8, we show the results of the HIA together with the
ones of the HFA. In the case ��0, the two results show
almost the same behavior, and the negative critical current in

the region �d�−U is found in both the results. Since, com-
pared to the HIA, the charge fluctuation is underestimated in
the HFA, the difference between the two results becomes
large as �d approaches the resonances.

Meanwhile, for �=0, the obvious difference is seen in the
region −U��d�0; that is, a negative critical current is not
seen in the results of the HIA. It means that the HIA fails to
demonstrate the �-junction behavior in the S/QD/S junction.
This is because, in the HIA, one overestimates the spin fluc-
tuation which is considered to be small in this region. Hence,
the spin doublet state is not well described. This discrepancy
should be corrected, but this is out of the scope of this paper.
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